

Customer Support Note 031

Using VDA 278 preset methods in Maverick and MIC

Disclaimer: It is vital that this Customer Support Note is read carefully before proceeding and that any instructions contained within the document are followed closely. Markes International will not accept responsibility for any damage done to instrumentation or personnel if any instructions within this document are not followed exactly. Any ongoing warranty or contract may be voided if failure to follow these instructions results in damage to the instrumentation. If anything is unclear, you must clarify the details with a Markes representative before proceeding.

VDA 278 was developed by the German Association of the Automotive Industry (VDA), and is a screening method that describes direct thermal desorption of materials with analysis by GC–MS for semi-quantitative determination of the emissions of VOCs and SVOCs from these materials.

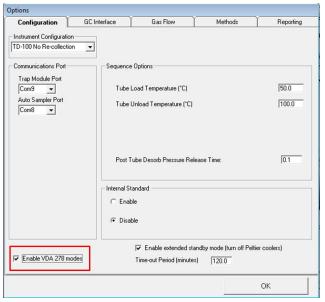
Many automotive manufacturers have taken VDA 278 and written an internal standard based on this methodology (for instance, GMW15634 and Toyota D423109). There are minor differences between these methods and VDA 278, but the general principles are the same.

VDA 278 uses a sampling introduction process called direct desorption in which a material is placed directly into an empty thermal desorption (TD) tube. The tube is placed into a thermal desorption instrument, heated and then the emissions from the material are focused on a cold trap, before injection onto a GC–MS system for detection.

VDA 278 describes two procedures, one for the determination of VOC compounds, and one for the determination of the FOG compounds (SVOCs). The analysis of each group of compounds requires dedicated methods for both the TD and GC–MS stages. Furthermore, an external calibration performed under a different set of TD conditions is also employed to allow semi-quantitation of the results obtained from the VOC and FOG analyses.

Which TD method should be employed and what the method parameters should be is often a source of confusion. As a result, dedicated methods have been incorporated into Markes' TD software to simplify this process and ensure consistency between testing laboratories. These methods have also been optimised for the use of glass tubes where appropriate.

This document outlines the procedure that must be followed in order to successfully use the dedicated VDA 278 software mode in Markes' thermal desorption software. The VDA 278 mode is available in Markes' TD Maverick software version 5.2.0 and in Markes Instrument Control (MIC) versions 1.1 and 2.0.



1. Software configuration

After the software has downloaded, the VDA 278 mode can be enabled as follows.

1.1 Maverick 5.2.0

- 1. In the toolbar select View \rightarrow Options.
- 2. In the Configurations tab of the window that appears, select the 'Enable VDA 278 modes' box (Figure 1).

Figure 1: Software configuration – Maverick.

3. The software will need to be restarted to enable the changes, but after this the VDA 278 mode will be available at all times unless de-selected.

1.2 MIC 1.1

1. The VDA 278 methods can be found in the template methods folder with the other standard template methods (Figure 2).



Figure 2: Software configuration – MIC 1.1.

1.3 MIC.2.0

1. The VDA 278 methods can be found in the preset menu in "2–3 Stage Tube Desorption method" template with the other method presets (Figure 3).

lt 🗸
0-17/HJ644 25
78 VOC 78 FOG
78 Calibration out Standard
30.0
5
t O-17/HJ644 25 78 VOC 78 Col 78 Calbration out Standard

Figure 3: Software configuration – MIC 2.0.

2. The methods can be selected here and saved for later use.

2. Setting up the methods – Maverick 5.2.0

2.1 VDA 278 VOC method

- 1. Create a new method by selecting File \rightarrow New \rightarrow Method.
- 2. Select the dedicated 'VDA Method 278 VOC for Glass Tubes' from the drop-down menu.

Method 4 (New)	
VDA Method 278 VOC for Glass Tubes	Standby Split On 20.0

Figure 4: Selecting the method.

- 3. Set the desorb and split flows as required for the standard method in use (default values are for VDA 278, so no changes should be required for use with this method). All other parameters are locked, as they are consistent between all methods.
- 4. Save the method with a suitable file name, e.g. VDA 278 VOC.mth.

The individual stages for the VDA 278 VOC method should be as shown in Figures 5–7.

VDA Method 278 V0	IC for Glass Tubes	•	Standby	On 120.0
Pre-Desorption	Tube/S	ample desorption	Ŷ	Trap Settings
C Dry Purge	Time/min [0.1	Flow ml/min 20.0		
D		Flow ml/min		Flow ml/min
Prepurge Time	Trap In Line	42.0	Split On	42.0

Figure 5: Pre-desorption settings for "VDA Method 278 VOC for Glass Tubes".

VDA Method	d 278 VOC for G	ilass Tubes 🔄]	Standby	Flow_ml/min 20.0
Pre-Des	orption	Tube/Sample	e desorption	Tra	np Settings
Tube Desorb Time 1 30.0 Time 2 0.0	Temp 1 90	☑ Trap In Line		′min I⊽ SplitOn	Split Flow ml/min 42.0

Figure 6: Tube/sample desorption settings for "VDA Method 278 VOC for Glass Tubes".

VDA Method 278 VOC for	Glass Tubes	•	Standby	Flow_ml/min 20.0
Pre-Desorption	Tube/Sa	ample desorption	Trap	Settings
Trap Desorb			7864	
Pre-Trap Fire Purge/min 1.0 Trap Low /#C		Trap Flow ml/min 42.0		Flow ml/min 42.0
-30 Heating Rate *C/s	Trap High /ºC 300	Trap Hold /min	🔽 Split On	Split Flow ml/mir 42.0
200 Flow Path Temp		Split Ratios	Inlet	

Figure 7: Trap settings for "VDA Method 278 VOC for Glass Tubes".

 Markes International Ltd

 T: +44 (0)1443 230935
 F: +44 (0)1443 231531
 E: enquiries@markes.com

2.2 VDA 278 FOG method

- 1. Create a new method by selecting File \rightarrow New \rightarrow Method.
- 2. Select the dedicated 'VDA Method 278 FOG for Glass Tubes' from the drop-down menu.

Figure 8: Selecting the method.

- 3. Set the desorb and split flows as required for the standard method in use (default values are for VDA 278, so no changes should be required for use with this method). All other parameters are locked, as they are consistent between all methods.
- 4. Save the method with a suitable file name, e.g. VDA 278 FOG.mth.

The individual stages for the VDA 278 FOG method should be as shown in Figures 9-11.


VDA Method 278 FO	G for Glass Tubes	<u> </u>	Standby Flow n Split On 20.0	nl/min
Pre-Desorption	Tube/S	ample desorption	Trap Settin	gs
C Dry Purge	Time/min	Flow ml/min		
Prepurge Time	🔽 Trap In Line	Flow ml/min 42.0	Flow m Split On 42.0	l/min

Figure 9: Pre-desorption settings for "VDA Method 278 FOG for Glass Tubes".

VDA Metho	d 278 FOG for 0	àlass Tubes 👱]	Standby	Flow_ml/min 20.0
Pre-Des	orption	Tube/Sample	e desorption	Tr	ap Settings
Tube Desorb Time 1 60.0 Time 2 0.0	Temp 1 120	🔽 Trap In Line	Trap Flow m 42.0		Split Flow ml/min 42.0
	Path Temp		Split Ratios	Inlet	

Figure 10: Tube/sample desorption settings for "VDA Method 278 FOG for Glass Tubes".

VDA Method 278 FOG for Glass Tubes	•	Standby Split On	Flow ml/min 20.0
Pre-Desorption Tube/S	ample desorption	Trap	Settings
Trap Desorb			
Pre-Trap Fire Purge/min 1.0 Trap Low /#C	Trap Flow ml/min		Flow ml/min 42.0
⊡ ⊡ Heating Rate *C/s Trap High /*C MAX ✓ 300	Trap Hold /min	🔽 Split On	Split Flow ml/m 42.0

2.3 VDA 278 calibration method

The VDA 278 calibration samples are injected onto stainless steel tubes, so a different way of accessing the method is required. An existing default method for this is included as a standard two-stage (or three-stage) desorption method.

- 1. Open the default method by selecting File \rightarrow Open, and selecting the following method: C:\ProgramData\Markes TD\Methods\VDA 278 Calibration.mth.
- 2. Set the desorb and split flows as required for the standard method in use (default values are for VDA 278, so no changes should be required for use with this method). All other parameters are locked, as they are consistent between all methods. Ensure the flows are the same as for the VOC and FOG sample methods.
- 3. Save the method.

The individual stages for the VDA 278 calibration method should be as shown in Figures 12–14.

VDAcalibration.mth Standard 2(3) stage d	lesorption	•	Standby	Flow_ml/min 20.0
Pre-Desorption	Tube/S	ample desorption	T	ap Settings
©urge ☞ Dry Purge	Time/min 0.1	Flow ml/min 20.0		
Prepurge Time	🔽 Trap In Line	Flow ml/min 42.0 🔽	Split On	Flow ml/min
200 Flow Path Tem		Split Ratios	Inlet	Call Datia
5.0 Minimum Carrie	r Pressure	33.3 : 1	Outlet Total	Split Ratio Calculator

Figure 12: Pre-desorption settings for "VDA Method 278 Calibration method".

Standard 2(3)	stage desorp	otion]	Standby	Flow_ml/min 20.0
Pre-Desor	ption	Tube/Sampl	e desorption	Tra	ap Settings
Tube Desorb Time 1 10.0 Time 2 0.0	Temp 1 300	🔽 Trap In Line	Trap Flow ml	/min I⊽ Split On	Split Flow ml/mir 42.0

Figure 13: Tube/sample desorption settings for "VDA Method 278 Calibration method".

Standard 2(3) stage desorption		•	Standby	Flow_ml/min 20.0
Pre-Descrption	Tube/Sar	mple desorption	Tra	p Settings
Trap Desorb				
Pre-Trap Fire Purge/min		Trap Flow ml/min 42.0		Flow ml/min 42.0
Trap Low /#C				
Heating Rate [®] C/s Trap H	High /ªC	Trap Hold /min		
Heating Rate *C/s Trap Heating Rate *C/s Trap Heating Rate *C/s Trap Heating Rate *C/s	High /ºC	Trap Hold /min 10.0	🔽 Split On	Split Flow ml/mi 42.0
	High /*C		l⊽ Split On	Split Flow ml/mi

Figure 14: Trap settings for "VDA Method 278 Calibration method".

3. Setting up the methods – Markes Instrument Control (MIC) 1.1

Open the Method Editor, and select 'Template Methods'. In this folder there are templates for the standard 2/3-stage desorption, tube conditioning and trap conditioning, as well as two VDA 278 methods (see Figure 2).

Figures 15–17 show the parameters set for the three VDA 278 methods in MIC. The split ratios are all that can be modified, and this should only be altered if specified in the standard method.

Mode: VDA 278 VOC					
General			Tube desorption		
✓ Standby split on	Flow (mL/min)	20	Desorb time 1 (min)		30.0
Flow path temperature (°C)		200	Desorb temperature 1 (°C)		90
V Overlap			Trap in line	Trap flow (mL/min)	42
GC cycle time (min)		€ 60.0 0	Split on	Split flow (mL/min)	42
Minimum carrier pressure (psi)		5	Tube desorb 2		
Pre-desorption			Desorb time 2 (min)		10.0
Prepurge time (min)		1.0	Desorb temperature 2 (°C)		250
Trap In Line	Trap flow (mL/min)	42	✓ Trap in line	Trap flow (mL/min)	50
Split on	Split flow (mL/min)	42 🖯	Split on		50
Dry purge					
Dry purge time (min)			Trap settings		
Purge flow (mL/min)		50	Trap purge time (min)		1.0
			Trap purge flow (mL/min)		42
			Trap low temperature (°C)		-30
			Trap heat rate (°C/s)		MAX 🔻
			Trap high temperature (°C)		300
			Trap desorb time (min)		× 3.0
			Desorb split on	Split flow (mL/mi	n 📮 20

Figure 15: Settings for the VDA Method 278 VOC method.

Method			
Mode: VDA 278 FOG			
General		Tube desorption	
Standby split on	Flow (mL/min)	Desorb time 1 (min)	60.0
Flow path temperature (°C)	200	Desorb temperature 1 (°C)	
V Overlap		✓ Trap in line	Trap flow (mL/min)
GC cycle time (min)	55.0	🕞 🛛 Split on	Split flow (mL/min)
Minimum carrier pressure (psi)	5	Tube desorb 2	
Pre-desorption		Desorb time 2 (min)	
Prepurge time (min)		Desorb temperature 2 (°C)	
✓ Trap In Line	Trap flow (mL/min)	🕞 🛛 Trap in line	Trap flow (mL/min)
Split on	Split flow (mL/min)	G Split on	Split flow (mL/min)
Dry purge			
Dry purge time (min)	1.0	Trap settings	
	50	Trap purge time (min)	
		Trap purge flow (mL/min)	
		Trap low temperature (°C)	-30
		Trap heat rate (°C/s)	MAX 🔻
		Trap high temperature (°C)	300
		Trap desorb time (min)	3.0
		Desorb split on	Split flow (mL/mi

Figure 16: Settings for the VDA Method 278 FOG method.

TD Method		
Mode: 2-3 Stage Desorb		
General	Tube desorption	
Standby split on Flow (mL/min)	Desorb time 1 (min)	
Flow path temperature (°C)	Desorb temperature 1 (°C)	300
Overlap	📝 Trap in line	Trap flow (mL/mir 🗐 42
GC cycle time (min)	Split on	Split flow (mL/min 42
Minimum carrier pressure (psi)	Tube desorb 2	
Pre-desorption	Desorb time 2 (min)	
Prepurge time (min)	Desorb temperature 2 (°C)	
Trap In Line Trap flow (mL/mir 42	✓ Trap in line	Trap flow (mL/mir 🔽 50
Split on Split flow (mL/mir 🖨 42 💽	Split on	Split flow (mL/min 🗐 50
Dry purge		
Dry purge time (min)	Trap settings	
Purge flow (mL/min)	Trap purge time (min)	
	Trap purge flow (mL/min)	
	Trap low temperature (°C)	-30
	Trap heat rate (°C/s)	MAX
	Trap high temperature (°C)	300
	Trap desorb time (min)	10.0
	Desorb split on	Split flow (mL/)

Figure 17: Settings for the VDA Method 278 Calibration method.

4. Setting up the methods - Markes Instrument Control (MIC) 2.0

Open the Method Editor, and select 'Template Methods'. In this folder there are templates for the standard 2/3-stage desorption, tube conditioning and trap conditioning. In the 2/3-stage desorption template method you can then select either of the two VDA 278 methods in the drop-down menu (see Figure 3).

TD Method				
Mode: 2-3 Stage Tube Desorption				
General		Tube desorption		
Apply presets for:	VDA 278 VOC ~	Desorb time 1 (min)		30.0
Standby split on	Flow (mL/min)	Desorb temperature 1 (°C)		90
Flow path temperature (°C)	200	🗹 Trap in line	Trap flow (mL/min)	42
Ovenap		Split on	Split flow (mL/min)	42
GC cycle time (min)	60.0	Tube desorb 2		
Minimum carrier pressure (psi)	5	Desorb time 2 (min)		10.0
Pre-desorption				
Prepurge	Prepurge time (min)	Desorb temperature 2 (°C)		250
☑ Trap In line	Trap flow (mL/min)	☑ Trap in line	Trap flow (mL/min)	50 • 50 •
Split on	Split flow (mL/min)	Split on		50
		Trap settings		
		🗹 Desorb trap		
		Trap purge time (min)		
		Trap purge flow (mL/min)		42
		Trap low temperature (°C)		-30
		Eevated trap purge		
		Elevated trap purge temperature (°C		25
		Trap heating rate (°C/s)		MAX V
		Trap high temperature (°C)		300
		Trap desorb time (min)		3.0
		Desorb split on	Split flow (mL/mi	n
Set				Split calculator
	Parameter set in method 🛛 🔽 Paran	neter set on sequence line	ОК	Cancel

Figure 18: Settings for the VDA Method 278 VOC method.

TD Method					
Mode: 2-3 Stage Tube Desorption					
General			Tube desorption		
Apply presets for:	VDA 278 F	OG 🗸 🗸 🗸	Desorb time 1 (min)		60.0
Standby split on	Flow (mL/min)	20	Desorb temperature 1 (°C)		120
Flow path temperature (°C)		200	🗹 Trap in line	Trap flow (mL/min)	42
✓ Overlap			Split on	Split flow (mL/min)	42
GC cycle time (min)		55.0	Tube desorb 2		
Minimum carrier pressure (psi)		5 🖯	Desorb time 2 (min)		10.0
Pre-desorption					
Prepurge	Prepurge time (min)	1.0	Desorb temperature 2 (°C)		250
	Trap flow (mL/min)	42	Trap in line	Trap flow (mL/min)	50
Split on	Split flow (mL/min)	42	Split on	Split flow (mL/min)	50
			Trap settings		
			Desorb trap		
					The second secon
			Trap purge time (min)		1.0
			Trap purge flow (mL/min)		42
			Trap low temperature (°C)		-30
			Elevated trap purge		
			Elevated trap purge temperature (°		25
			Trap heating rate (°C/s)		MAX 🗸 🖯
			Trap high temperature (°C)		300
			Trap desorb time (min)		5.0
			Desorb split on	Split flow (mL/mi	n 📮 42 🖯

Figure 19: Settings for the VDA Method 278 FOG method.

TD Method					
Mode: 2-3 Stage Tube Desorption					
General			Tube desorption		
Apply presets for:	VDA 278 C	alibration	Desorb time 1 (min)		10.0
Standby split on	Flow (mL/min)		Desorb temperature 1 (°C)		300
Flow path temperature (°C)		200	Trap in line	Trap flow (mL/min)	42
Overlap					
			Split on	Split flow (mL/min)	42
		30.0	Tube desorb 2		
Minimum carrier pressure (psi)		5	Desorb time 2 (min)		
Pre-desorption			Desorb temperature 2 (°C)		250
Prepurge Trap In line	Prepurge time (min) Trap flow (mL/min)	 ↓ 1.0 ↓ 42 	☑ Trap in line	Trap flow (mL/min)	50
I Trap in line	map now (mp/min)		Split on		50
Split on	Split flow (mL/min)	42			
			Trap settings		
			Desorb trap		
			Trap purge time (min)		1.0
			Trap purge flow (mL/min)		42
			Trap low temperature (°C)		-30
			Elevated trap purge		
			Elevated trap purge temperature (°C		25
			Trap heating rate (°C/s)		MAX 🗸 🖯
			Trap high temperature (°C)		300
			Trap desorb time (min)		10.0
			Desorb split on	Split flow (mL/mi	n 🖶 10 🖯

Figure 20: Settings for the VDA Method 278 Calibration method.

Please refer to Application note 142 for a full guide on how to analyse samples by VDA 278.

For all technical support queries, please contact Markes International.

Email: support@markes.com Tel.: +44 (0)1443 233922