

TF-SPME

Instruction for use

PRODUCT REFERENCE:

TF-SPME Starter Kit, PDMS

C-TF-P-KIT

TF-SPME Starter Kit, PDMS/CAR

TF-SPME Starter Kit, PDMS/DVB

C-TF-PDVB-KIT

TF-SPME Starter Kit, PDMS/HLB

C-TF-PHLB-KIT

Table of Contents

1.	Introduction3			
2.	Com	Components3		
3.	3.1	ditioning Initial conditioning	4	
4.	Sam 4.1	Subsequent reconditioning Ipling Sampling procedure Sampling tips	5	
5.		lysis Thermal desorption		
6.	Stor	age	10	
7.	Spe	Specifications10		
8.	Contact details11			

1. Introduction

TF-SPME membranes are designed to be used in conjunction with industry-standard-sized stainless steel $3\frac{1}{2}$ " × $\frac{1}{4}$ " sorbent tubes for analysis using thermal desorption (TD)–gas chromatography (GC).

CAUTION

Do not manually handle the TF-SPME membrane. To avoid contamination, the membranes must be handled with clean handling tools and contact with contaminated surfaces must be avoided.

2. Components

Each TF-SPME starter kit consists of:

- 2 × TF-SPME membranes, 4 cm, supplied in 4 mL vials
- 2 × 20 mL clear screw cap vials with caps and septa
- 2 × cotter pins

- 2 × glass-encapsulated magnetic stir bars
- 2 × industry-standard-sized desorption tubes
- Instruction for use

The following items will also be required, but are not supplied with the TF-SPME starter kit:

- Tweezers
- A method for agitation or magnetic stirring

3. Conditioning

TF-SPME membranes should be conditioned in a flow of inert carrier gas (He or N_2) prior to first use. This can be achieved using a dedicated tube-conditioning mode on a thermal desorber or using an off-line conditioning unit such as Markes' TC-20 $^{\text{\tiny M}}$, using empty stainless steel sorbent tubes.

NOTES

Maximum desorption temperatures differ according to the sorbent phase impregnated on the TF-SPME membrane: PDMS/DVB and PDMS/HLB sorbents have a recommended maximum desorption temperature of 270°C, whilst PDMS/CAR has a recommended maximum desorption temperature of up to 300°C.

3.1 Initial conditioning

Prior to first use, TF-SPME membranes should be conditioned using the following short conditioning procedure:

Time: 30-60 minutes

■ Flow: 50–100 mL/min, inert carrier gas

Temperature: 250°C

3.2 Subsequent reconditioning

Depending on the application and sample matrix, TF-SPME membranes may require a short period of conditioning between uses. The following procedure is recommended:

Page 4 www.markes.com

- Time: 15–30 minutes
- Flow: 50-100 mL/min, inert carrier gas
- Temperature: The highest desorption temperature the membrane has been exposed to.

CAUTION Do not exceed the maximum desorption temperature for conditioning or analysis.

4. Sampling

TF-SPME membranes, of 4 cm length, can be used for both headspace and immersive sample extractions. Typically, a 20 mL headspace glass vial closed with a septum cap is used.

TF-SPME sampling conditions can vary significantly from one analysis to another, with parameters such as extraction time, temperature and agitation speed all varying depending on analysis.

Figure 1: TF-SPME with PDMS/DVB, PDMS/CAR, PDMS/HLB and sorbent tube (left to right). PDMS not shown.

4.1 Sampling procedure

- [1] Remove the TF-SPME membrane from the storage vial using appropriate tweezers.
- [2] Unscrew the sample vial cap and pierce the vial cap septum from the outer cap with a cotter pin.
- [3] Transfer the membrane to the cotter pin, taking into account positioning for headspace or immersive sampling.

Step [2] Piercing the septum.

Step [3] Transferring membrane to cotter pin.

Page 6 www.markes.com

[4] Seal the membrane in the vial.

Typical TF-SPME vial set up for sample extraction.

- [5] Adjust the membrane insertion depth by moving the cotter pin accordingly.
- [6] To accelerate equilibration of the analytes between the sample and the sorbent phase, the sample vial should be magnetically stirred or agitated.
- Magnetic stirring can be achieved by placing a magnetic stir bar into the vial before inserting the TF-SPME membrane and sealing the vial.
- Agitation can be achieved using Markes International's HiSorb™ Agitator (U-HSAG-20) or a similar instrument.
- NOTES Tests on TF-SPME membranes have shown them to withstand agitation speeds of up to 2000 rpm.
- [7] Once sampling is complete, remove the TF-SPME membrane from the sample vial using tweezers. This avoids the need to handle the membrane directly.
- [8] In the case of immersive extractions, blot dry the membrane using a dry lintfree tissue before desorption; for difficult matrices, rinse the membrane with deionised water after sample extraction to remove any residue from the surface, followed by blot drying in order to reduce matrix contamination.

Step [8]: Drying the TF-SPME membrane.

4.2 Sampling tips

- For immersive sampling, minimise the headspace in the sample vial for the most efficient extraction of volatile compounds.
- For headspace sampling, fill the vial to a level that prevents direct contact between the membrane and the sample.
- Optimise the sampling time to achieve the most efficient extraction for compounds of interest.
- Sorptive extraction works on the principle of absorption, which is an equilibrium process. The maximum achievable extraction efficiency for a particular analyte therefore depends upon its particular characteristics, and it may not be possible to achieve 100% recovery in all cases.

Page 8 www.markes.com

5. Analysis

5.1 Thermal desorption

- [1] Ensure the TF-SPME membrane is free of residue and dry.
- [2] Insert the membrane into the TD tube using tweezers, ensuring the membrane is touching the gauze to guarantee a uniform heating of the membrane during desorption.
- [3] Ensure that the 'pre-purge' step in the TD method is set for at least 1 minute to remove all oxygen and prevent damage to the membrane sorbent. The trap should be 'in-line' during this step to prevent loss of any analytes released from the sorbent at ambient temperature.
- [4] Thermally desorb the membrane.

Exact parameters will depend on the sample and should be optimised during method development.

Typical parameters are:

- Desorption time: 5-10 minutes
- Flow: 50-80 mL/min
- Temperature: Typically 225–270°C for PDMS/DVB and PDMS/HLB. 250–300°C for PDMS/CAR.
- NOTES As for PDMS-based capillary column phases, some siloxane bleed is to be expected from the TF-SPME membrane.
- NOTES When used in a clean matrix and properly cared for, TF-SPME membranes have been proven to last for over 100 analytical extractions

6. Storage

New TF-SPME membranes are best stored within their shipment vials for long-term storage.

After first desorption, membranes can be kept within shipment vials or sorbent tubes sealed with brass caps for long-term storage.

Alternatively, membranes can be stored in sorbent tubes sealed with DiffLok™ caps for up to 24 h.

7. Specifications

Part number	Description	Dimensions
C-TF-P-1	TF-SPME membrane, PDMS (polydimethylsiloxane), pk 1	40 × 4.85 × 0.04 mm
C-TF-PDVB-1	TF-SPME membrane, PDMS/DVB (polydimethylsiloxane/divinylbenzene), pk 1	40 × 4.85 × 0.04 mm
C-TF-PCAR-1	TF-SPME membrane, PDMS/CAR (polydimethylsiloxane/carboxen), pk 1	40 × 4.85 × 0.04 mm
C-TF-PHLB-1	TF-SPME membrane, PDMS/HLB (polydimethylsiloxane/hydrophilic lipophilic balanced), pk 1	40 × 4.85 × 0.04 mm

Compatible tube types:

■ Any industry-standard-sized 3½" × ¼" sorbent tube

This product is manufactured and sold under the following patents:

- United States, Patents 6,588,255 and 6,941,825
- Canada, Patent No. 2,389,726
- Japan, Patent No. JP2003-521711

Page 10 www.markes.com

8. Contact details

For technical support, please contact your supplier in the first instance. If they are unable to resolve your query, please contact Markes International's service department:

E: support@markes.com

T: +44 (0)1443 230935

W: www.markes.com

